Приветствую Вас Гость • Регистрация • Вход • RSS
Понедельник, 21.4.2025
Главная » 2010 » Март » 6 » Физико-механическое обоснование перехода к ресурсосберегающим технологиям взрывного разрушения горных пород
22:33
Физико-механическое обоснование перехода к ресурсосберегающим технологиям взрывного разрушения горных пород
Физико-механическое обоснование перехода к ресурсосберегающим технологиям взрывного разрушения горных пород

Вице-премьер России Дмитрий Рогозин подготовил проект правительственного постановления, по которому менеджмент предприятий военно-промышленного комплекса должен будет декларировать свои доходы. Как заявил Рогозин РИА Новостям, необходимо "установить цепочку истинных владельцев частных предприятий ОПК».

К приоритетным направлениям расчета перечисленных параметров взрыва следует отнести выбор рациональной конструкции скважин-ных зарядов ВВ (таких как рассредоточенный или комбинированный заряды), использование низкобризантных ВВ, схем взрывания и т.д. Увеличение крепости пород ведет к повышению удельного расхода ВВ, что негативно сказывается на выходе переизмельченного продукта. Обводненность пород не позволяет использовать низкобризантные ВВ типа игданит и отдельные конструкции скважинных зарядов, например с воздушными промежутками [1]. При производстве взрывных работ на карьерах наблюдается также выход негабаритных фракций, размеры которых могут не удовлетворять требованиям последующих технологических стадий производства. Выход негабарита - понятие относительное, определяемое емкостью погрузочно-транспортного оборудования. Выход негабарита приводит к поломке и простоям транспортно-погрузочного оборудования, а также требует проведения вторичного дробления. Обычно применяется основной метод вторичного дробления негабаритов (метод накладных зарядов). Метод требует большого удельного расхода ВВ, что приводит к образованию интенсивных воздушно-ударных волн, воздействие которых может привести к негативным последствиям для находящихся на пути распространения УВВ зданий и сооружений.

Следовательно, существующие технологии требуют учета установленных фактов разрушения горных пород при совершенствовании качества взрывной подготовки горной массы на карьерах.

На рис. 1 и 2 показаны технологии БВР на Дуфферинском карьере (Канада) и в Каменногорске (Ленинградская область). Из рисунков видно, что зарубежные технологии БВР более эффективны, чем технологии, применяемые в России. В результате, используемые в настоящее время отечественные технологии взрывного разрушения горных пород по качеству дробления, разбросу разрушенной породы и выходу негабаритов и мелкодисперсной фракции и т.п. уступают технологиям, применяемым на западных горнодобывающих предприятиях.

БВР в Каменногорске (Ленинградская обл.)

Рис. 2. БВР в Каменногорске (Ленинградская обл.)

В настоящей работе рассматривается взрывное разрушение горных пород, обеспечивающее уменьшение выхода мелкой фракции и негабаритов, основанное на рассмотрении физических процессов взрывного разрушения, которое необходимо внедрять и использовать при разрушении горных пород.

При взрывании зарядов различных ВВ характер разрушения в ближней зоне неодинаков. Меньшая доля энергии остается в среде при взрыве тех ВВ, у которых меньше скорость детонации. А увеличение скорости детонации сопровождается резким увеличением объемной энергии диссипации разрушения в непосредственной близости от заряда [2]. Данная энергия при взрывном разрушении необратимо расходуется на нагревание частиц породы в ближней зоне и образование трещин, а также их слияние, что, в свою очередь, приводит к образованию кусков разрушенной горной массы. Таким образом, на формирование механических возмущений расходуется только часть энергии взрыва, оставшаяся после исключения из общей энергии взрыва энергии диссипации.

Статические и ударные адиабаты


Рис. 3. Статические и ударные адиабаты

На рис. 3 показано, как из началь­ного состояния среды А (Ро - началь­ное давление, Vo- начальный объем) под действием ударного сжатия па­раметры среды изменяются до со­стояния А1 (Р1 - давление, V1- объем) или А2 (Р2 - давление, V2 - объем).

Под состоянием А2 понимается более бризантное ВВ, а под состоя­нием А2 менее бризантное ВВ. На­грузка происходит по ударной ади­абате. Из состояний А1 и А2 после прохождения фронта происходит разгрузка частиц. Разгрузка описы­вается статической адиабатой. Та­ким образом, существует разность между энергией, запасенной на фронте, и энергией разгрузки. Эта разность энергии (заштрихованная область) для ВВ с высокими дето­национными параметрами А-А2-С и для ВВ с низкими детонационны­ми параметрами А-А1-В, что назы­вается энергией диссипации. Она является остаточной внутренней энергией частиц после прохожде­ния фронта. Отсюда видно, что ВВ с высокими детонационными пара­метрами теряет больше энергии, чем ВВ с низкими детонационными параметрами [3].


Тангенциальные составляющие волны напряжения и энергия диссипации

Категория: Инновации | Рейтинг: 0.0/0

Другие новости:

Mobile Lunar Base: в базе можно покататься на Луне
Судьба космического буксира пока под вопросом
Костюм Age Explorer мгновенно состарит вас на полстолетия
Выпуклые трещины показали учёным незнакомый Марс
Кромешная тьма спасёт мир
Всего комментариев: 0
Имя *:
Email *:
Код *: